Technical Report on a Geological Mapping and Sampling Program Nivloc Area, Nevada, USA

Prepared for

International Millennium Mining Corp.

20 Sixth Street New Westminster, British Columbia, Canada V3L 2Y8

Report Date: August 21, 2017

Prepared by:

Seymour M. Sears, B.A., B.Sc., P.Geo.

Sears, Barry & Associates Limited

International Geological Consultants 840 Hillsdale Crescent, Sudbury, Ontario, Canada P3E 3S9

APGO Certificate of Authorization No. 90150

TABLE OF CONTENTS

1.0 Overview	3
2.0 Guisti Zone	5
3.0 Big Ridge Area (Guisti West)	17
4.0 Cantina Area (South of Nivloc near Tailings)	19
5.0 Nivloc East	23
6.0 Nivloc West Area	
6.1 Gold Cap	26
6.2 Shaft and Open Cut/Pit Area West of Silver Pond Creek	
6.3 West of Silver Pond Creek beyond Shaft and Open Cut/Pit	
6.4 Martin Adit Vein	
7.0 MDP Area	
8.0 Interpretation and Conclusions	
8.1 Nivloc Extension	
8.2 Guisti Area	49
8.3 Guisti West Area	49
9.0 Recommendations	51
9.1 Nivloc Extension	51
9.2 Guisti Structure	51
9.3 Guisti West Area	51
9.4 General	51
TABLES	
Table 2 Samples from Guisti Area	6
Table 3 Tom Zone Samples	
Table 4 Samples from Guisti North Area	
Table 5 Samples from Guisti West Area	
Table 6 Samples from Quartz Veins South of Nivloc Zone	
Table 7 Samples from east of Main Shaft, Nivloc Vein	
Table 8 Samples from Gold Cap	
Table 9 Samples from Pit/Shaft Area west of Pond	
Table 10 Samples from West Nivloc Area	
Table 11 Samples from Martin Adit Area Table 12 Samples from MDP Area	
TADIC 14 DAITIPICS HUIT IVIDE ALCA	44

FIGURES

Figure 1 Aerial Photograph of the Nivloc Area Showing Prospecting Areas	3
Figure 2 Guisti Sample Location Map	7
Figure 3 Guisti Drawing	8
Figure 4 Guisti Main Adit	9
Figure 5 Guisti North Adit	10
Figure 6 Comb Zone Sample Location Map	15
Figure 7 Ross Valley Sample Location Map	16
Figure 8 Guisti West Zone - Big Ridge	18
Figure 9 Cantina Zone Sample Location Map	21
Figure 10 Nivloc East Sample Location Map	22
Figure 11 Gold Cap Sample Location Map	28
Figure 12 Silver Lake Sample Location Map	31
Figure 13 Nivloc West Sample Location Map	36
Figure 14 JOY Adit Sample Location Map	37
Figure 15 JOY Adit	38
Figure 16 Martin Area Sample Location Map	41
Figure 17 Martin Vein Sample Location Map	42
Figure 18 MDP Sample Location Map	46
PHOTOS	
Photo 1 Guisti North Adit and Vein	12
Photo 2 Guisti and Tom Zones	13
Photo 3 Guisti West Zone	19
Photo 4 Rhyolite Hill with Gossan	23
Photo 5 Nivloc East looking east from Main Shaft	25
Photo 7 Gold Cap looking west from Main Shaft	
Photo 8 Open Cut west of Silver Pond Creek	32
Photo 9 Nivloc West Area looking west	39
Photo 10 Martin Adit and Vein looking north	43
Photo 11 MDP Area Quartz Veining	47

1.0 Overview

The following is a technical report on work completed on the Nivloc Property during June and July of 2017 on behalf of International Millennium Mining Corp. (IMMC). The general results from the assays received from approximately 120 rock samples is presented in this report. The areas referred to are shown on Figure 1 along with indexed outlines of detailed figures showing sample locations. The work carried out generally followed the proposed program but some variations were made, based upon results in the early days of the prospecting.

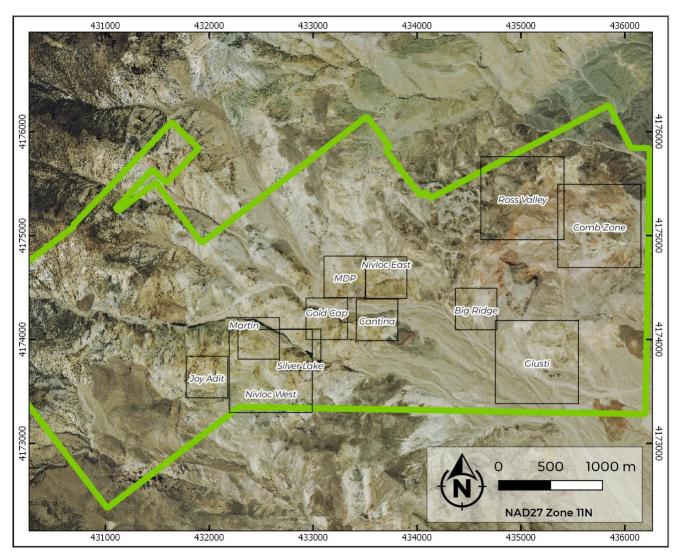


Figure 1 Aerial Photograph of the Nivloc Area Showing Prospecting Areas

The work program at Nivloc was designed to improve the geological understanding of the precious metal mineralization associated with the Nivloc structure outside of the resource area drill tested in the IMMC 2011/2012 drilling program. The information gained should help to guide future drill testing of the Nivloc structure, particularly in its northeast and southwest extension as well as splay veins that trend at low angles to the Nivloc Vein. These splay veins have precious metal grades that are similar to the Nivloc Vein and reach widths up to 4 metres. The work also targeted the Guisti Vein, a gold (Au) and silver (Ag) bearing vein structure that is unrelated to the Nivloc structure but occurs in the eastern part of the Nivloc Property.

The work program included geological mapping, prospecting and rock sampling covering the axis of the Nivloc structure for a length of approximately 5 km and the axes of the Guisti structure for more than 2 km. The knowledge gained from this work program will be instrumental in the evaluation of other precious metal targets in the Silver Peak mining camp.

The work is discussed in the following sections that relate to various parts of the IMMC Nivloc Property.

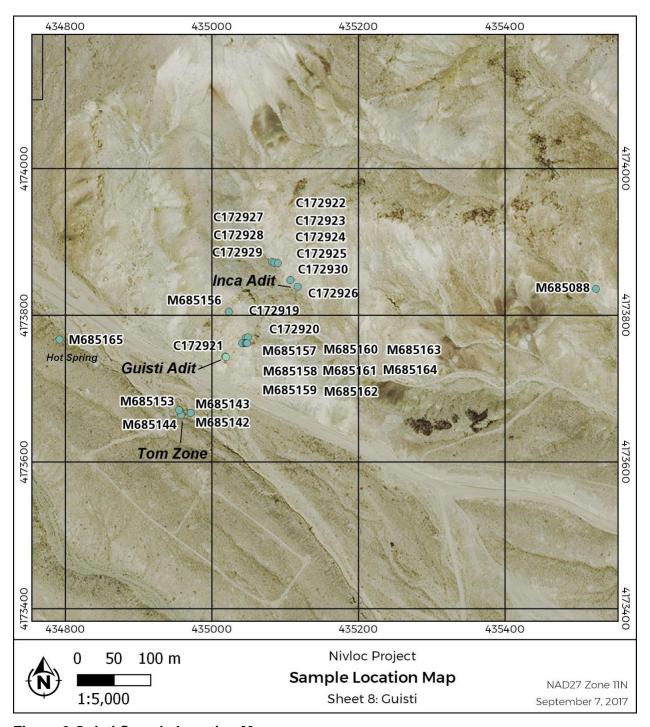
2.0 Guisti Zone

The work program at Guisti included prospecting, rock sampling and reconnaissance scale geological mapping. A total of 5 days was spent in this area with some of the work in the northeastern part overlapping with the Nivloc East work program. The Guisti vein is exposed in an old adit, the Main Guisti Adit, beside the Nivloc access road, approximately 1.5 km southeast of the turnoff to the Main Nivloc Shaft area. A second adit referred to in this report as the Inca Adit is located approximately 125 m northeast of the main Guisti Adit.

The prospecting program traced the Guisti Vein in outcrop for approximately 200 metres (m) and with boulders for an additional 150 m towards the northeast. At that point, it disappears beneath talus and overburden. Towards the southwest, the vein is covered by alluvial debris.

The Guisti Vein, where observed at surface, consists of 2 parallel quartz veins separated by approximately 1.5 m of deformed and altered breccia. The west vein is 0.3 – 0.5 m wide and where sampled assays from 1.64 – 12.25 grams per tonne gold (g/t Au) and from 6.0 to 42 g/t silver (Ag). The east vein assayed from 0.12 – 4.35 g/t Au and 1.4 – 18 g/t Ag. The single sample collected from the center assayed 0.66 g/t Au and 2.7 g/t Ag.

The host rock to the Guisti Vein is a very siliceous volcanic breccia. In the area of the Main Adit, these rocks are highly silicified on both sides of the vein for upwards of 25 m, although there is little quartz veining beyond 10 metres. In the area of the Inca Adit, the Guisti Structure is very strong, where the zone of alteration (silica, sericite, argillite), with the Guisti Vein in its core, has a width of more than 50 metres. In the immediate footwall of the vein in the Inca Adit area, intense alteration (argillite, calcite, silica) makes the identity of the rocks difficult and there is a possibility that the footwall rocks were originally clastic sediments.


A total of 21 samples were collected from the Guisti Vein. The descriptions and assays for the Au and Ag are shown in Table 1 and the locations are shown on Figure 2. Figure 3 is a satellite image showing the outline of the alteration zone at Guisti along with the adit locations.

The main Guisti Adit area was sampled in 3 locations (Figure 4). A character sample taken from the 0.25 m wide west vein at the entrance to the adit assayed 12.25 g/t Au and 42 g/t Ag. Two samples were collected from rubbly outcrop approximately 10 m northeast of the adit. These assayed 1.64 g/t Au and 6 g/t Ag over 0.5 m (west vein) and 0.15 g/t Au and 2 g/t Ag over 0.2 m

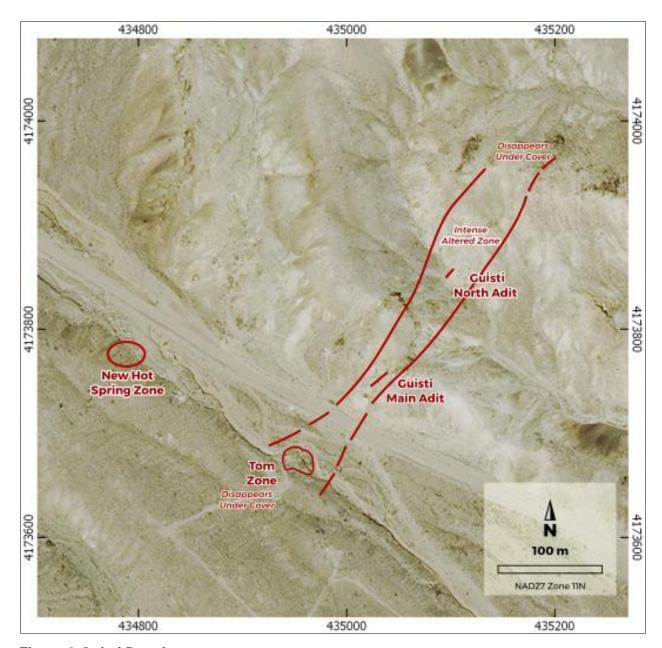

(east vein). Eight samples were chipped across a 7.5 m width of the poorly developed vein approximately 25 m northeast of the adit from a ledge in a steep incline of well exposed bedrock.

Table 1 Samples from Guisti Area

Samples from Guisti Area									
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values				
North Adit - West vein	chip/0.5 m	172922	7.5	16.1					
North Adit - Center	chip/1.5 m	172923	0.66	2.7	91 ppm As				
North Adit - East Vein	chip/0.4 m	172924	4.35	19.1					
North Adit - Altered Zone East	chip/6.0 m	172925	0.39	2.6	475 ppm As				
North Adit - Altered Zone East	chip/2.0 m	172926	0.12	1.9	121 ppm As; 3 ppm Sb; 459 ppm Zn				
North Adit - qtz veining	chip/0.8 m	172927	0.49	4.9					
North Adit - qtz veining	chip/ 0.3 m	172928	0.49	4.9					
North Adit - qtz veining	chip/1.5 m	172929	11.35	28.8					
North Adit - sil zone	chip/2.5 m	172930	0.19	1.1	247 ppm As				
South Adit - West qtz vein - surface	chip/0.5 m	172919	1.64	6	907 ppm As; 87 ppm Mo; 44 ppm Sb				
South Adit - East qtz vein - surface	chip/0.5 m	172920	0.15	2					
South Adit - West qtz vein in Adit	grab	172921	12.25	42					
Quartz Vein parallel to Guisti	grab	685156	0.1	1.5					
South Adit - qtz vein on cliff	chip/0.5 m	685157	0.63	13					
South Adit - 1 m west of qtz vein	chip/1.0 m	685158	0.06	1.7	135 ppm As				
South Adit - 2 m west of qtz vein	chip/1.0 m	685159	0.1	1.8	225 ppm As				
South Adit - 3 m west of qtz vein	chip/1.0 m	685160	<0.05	0.7					
South Adit - 4 m west of qtz vein	chip/1.0 m	685161	0.06	0.4					
South Adit - 1 m east of qtz vein	chip/1.0 m	685162	<0.05	0.2	>25% Ca				
South Adit - 2 m east of qtz vein	chip/1.0 m	685163	0.15	6					
South Adit - 3 m east of qtz vein	chip/1.0 m	685164	0.12	1.4	113 ppm As				

Figure 2 Guisti Sample Location Map

Figure 3 Guisti Drawing

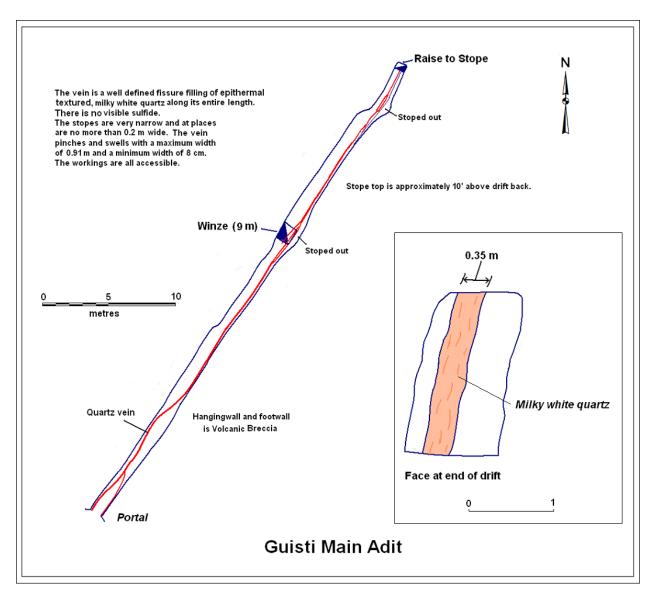


Figure 4 Guisti Main Adit

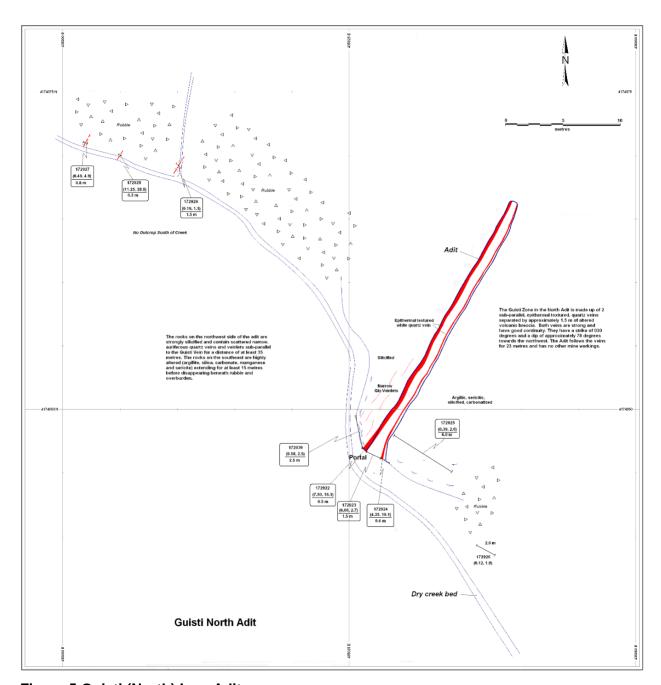


Figure 5 Guisti (North) Inca Adit

Nine (9) samples were collected from the Inca Adit area as shown on Figure 5. The Inca Adit is driven along the Guisti Structure for approximately 23 m. The structure consists of a 0.3 – 0.5 m wide quartz vein on the west side and a 15 – 20 cm wide vein on the east side, again separated by a 1.5 m wide zone of deformed, silicified volcanic breccia. A 0.5 m chip sample across the west vein assayed 7.5 g/t Au and 17 g/t Ag. A 0.4 m wide chip sample on the east side that included the east vein assayed 4.35 g/t Au and 18 g/t Ag. The 1.5 m wide center zone assayed

0.66 g/t Au and 2.7 g/t Ag. A chip sample over 2.5 m on the immediate hanging wall (west) side of the Guisti Vein and containing several narrow quartz veinlets assayed 0.19 g/t Au and 1.1 g/t Ag and elevated arsenic (247 ppm). Three other quartz veins in the hanging wall were also mineralized with one vein assaying 11.35 g/t Au and 28.8 g/t Ag over 0.3 m. A chip sample across a 6.0 m wide altered zone in the foot wall immediately adjacent to the vein assayed 0.39 g/t Au and 2.6 g/t Ag. This sample also contained 475 ppm arsenic (background of <10 ppm), a strong indicator of precious metal mineralization in this area. Other samples from the Guisti Vein and its wallrocks also contained elevated pathfinder elements such as As, Sb and Cd.

Photo 1 shows the Guisti Vein and the rediscovered Inca Adit.

Photo 1 Guisti (North) Inca Adit and Vein

Prospecting to the southwest of the Main Guisti Adit was unsuccessful in locating the Guisti Vein due to lack of bedrock exposure. One area of outcrop occurs in a creek approximately 125 m southwest of the Adit. The outcrop is exposed over an area that is approximately 25 m x 25 m. The Guisti Vein projects through the southeast side of this exposure. The zone is a silicified volcanic breccia that has been re-brecciated by later tectonics. The matrix to the late breccia contains quartz, limonite and argillite. Four (4) samples collected from this zone, referred to as the Tom Zone assayed from 0.19 – 1.69 g/t Au and 1.4 – 6 g/t Ag (Table 2). The 4 samples also contained elevated molybdenite (Mo) ranging from 24 – 263 ppm (background value of all samples is 3 ppm Mo) and 3 of the samples contained elevated Antimony (Sb) ranging from 2 – 4 ppm (background of <1 ppm Sb). The Tom Zone has been described as a paleo "hot spring" and may be part of the silicified hanging wall of the Guisti Vein. Photo 2 shows the muck pile from

the Main Inca Adit with the adit adjacent to the left of a small "mine" building. The Tom Zone can be seen in a creek bed in the foreground.

Photo 2 Guisti and Tom Zones

A fifth sample shown in Table 2 was collected from a small exposure of a silicified zone resembling a hot spring deposit located approximately 100 m northwest of the Tom Zone. This sample assayed 0.19 g/t Au and 18 g/t Ag and contained elevated Mo (68 ppm in a background of 3 ppm) and traces of mercury (Hg). It is unclear if there is any genetic relationship between these 2 zones. Additional sampling is required in the area of the new discovery.

Table 2 Tom Zone Samples

Samples from Guisti - Tom Zone								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Qtz veining, sil vol bx	grabs/0.3 m	685142	1.69	6	263 ppm Mo, 2 ppm Sb			
Matrix, sil vol bx	grabs/0.3 m	685143	0.32	2.5	45 ppm Mo, 4 ppm Sb			
Qtz matrix, sil vol Bx	grabs/0.3 m	685144	0.42	5	86 ppm Mo, 3 ppm Sb			
Sil, vuggy vol bx, hot spring	chip/1x1 m	685153	0.19	1.4	24 ppm Mo			
Qtz in bx rock,								
calcite replace, hot								
spring	chip/1x0.5 m	685165	0.19	8	63 ppm Mo, 2 ppm Hg			

The Guisti Zone was traced intermittently for approximately 150 m northeast of the Inca Adit where it becomes covered with talus and desert pan as well as sedimentary rocks that are thought to postdate the mineralization. Nine samples were collected from outcrop and float in this area. The assay results are shown on Table 3 and the sample locations on Figures 6 and 7.

Table 3 Samples from Guisti North Area

Samples from Guisti North Area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Black volcanic rock	grab	685089*	<0.05	0.2	24.8% Ca			
Chalcedonic vugs from rhyolite	grab	685090	<0.05	0.2				
Siliceous, limonitic rock trend	grab	685091	<0.05	<0.2				
Boulder with chalcedonic qtz veining	grab	685099	<0.05	0.4				
Weathered argillic till from trend	till sample	685140	<0.05	<0.2	2.09% Ca			
Weathered argillic till from trend	till sample	685141	<0.05	<0.2	2.09% Ca			
Qtz stockwork in rock	chips/1x1 m	685087	<0.05	1.5	1.2% Ca			
Qtz veining 5-15 cm	grabs/15 cm	685088**	<0.05	<0.2	7.4% Ca			
Rhyolite with chalcedony	grab	685114	<0.05	<0.2	93 ppm As, 5 ppm Sb			

^{*} located east of Figure 6; ** shown on Figure 2

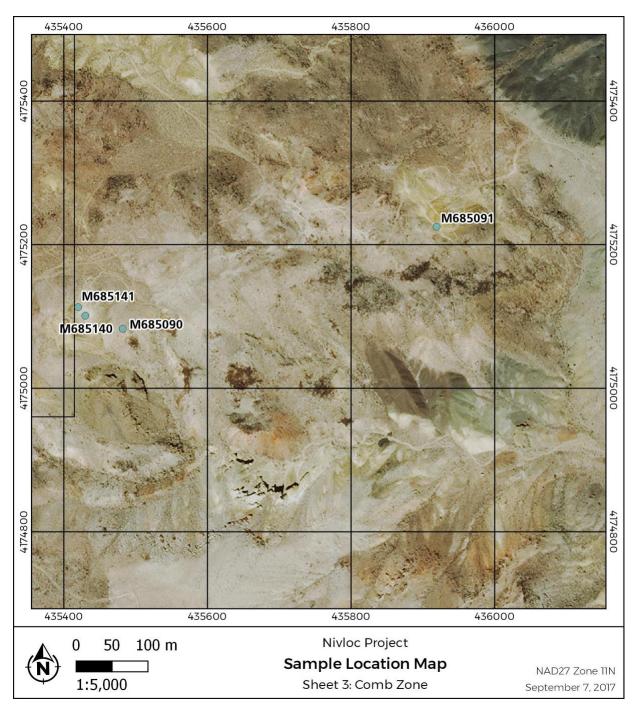
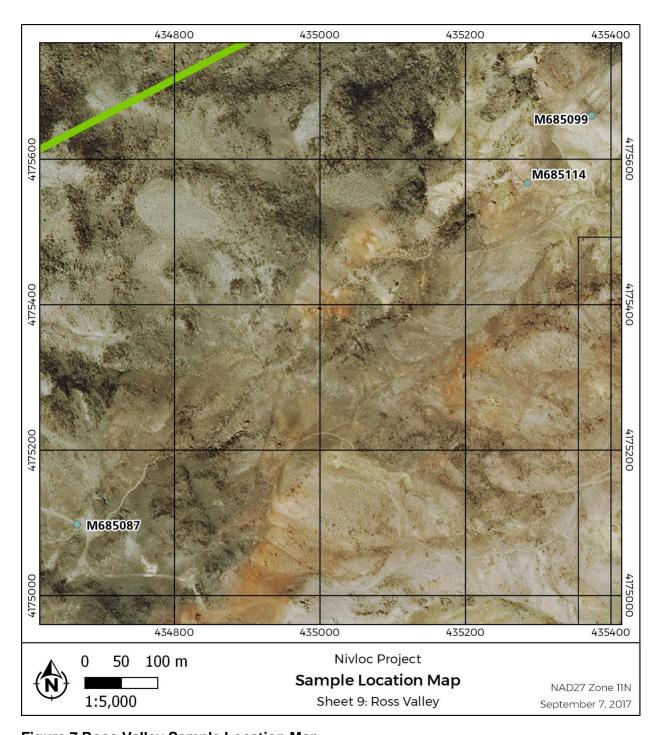



Figure 6 Comb Zone Sample Location Map

Figure 7 Ross Valley Sample Location Map

3.0 Big Ridge Area (Guisti West)

The Big Ridge area refers to a zone of highly silicified sedimentary and volcanic rocks located approximately 600 m northwest of the Guisti Structure. This area is characterized by swarms of narrow, quartz veins (2 – 20 cm) trending 032° ± 10° and dipping steeply towards the northwest, roughly parallel in strike to the Guisti Vein. The veins increase in width and strength towards the northeast where they disappear beneath talus that has shed from a dominant hill in this area composed of intrusive type rhyolite. The veins have unusual lateral continuity, some of which were traced for more than 200 m. Thirteen samples were collected from veining in this area. Assays ranged from trace to 0.45 g/t Au and trace to 9 g/t Ag (See Table 4). Many of the samples also contained elevated values in pathfinder elements such as antimony (Sb), up to 20 ppm (background of <2 ppm) and arsenic (As), up to 246 ppm (background of 10 ppm). Figure 8 shows the location of the samples from the Big Ridge area. Photo 3 shows a swarm of quartz veins near the northeastern end of the area examined. Despite relatively low Au and Ag values in the surface samples collected, this area may represent a strong, high-tonnage, buried Au target.

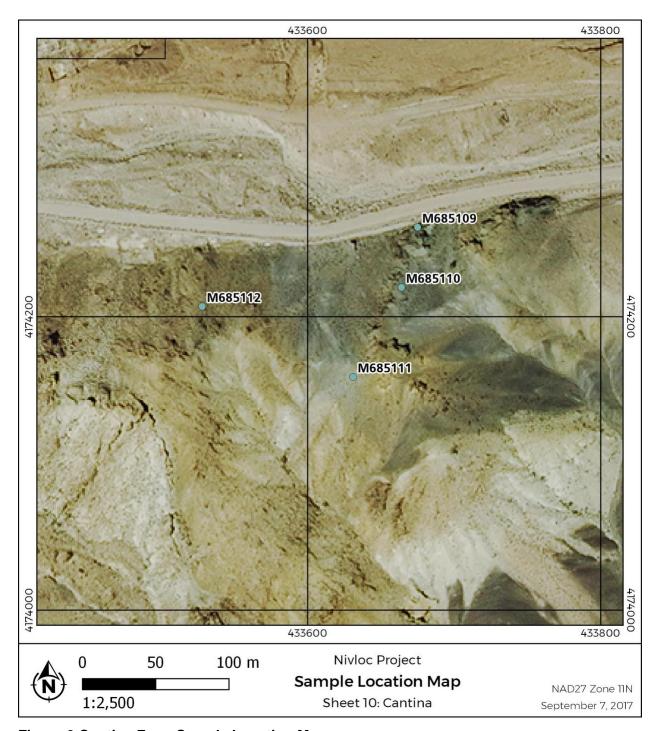
Table 4 Samples from Guisti West Area

Samples from Guisti West Area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Silicified felsic dyke	chips/1x1 m	685120	<0.05	0.2				
2 cm qtz calcite vein	grab/10 cm	685121	0.14	1.8				
5 cm qtz vein	grab/5 cm	685122	<0.05	1.2	4.8% Ca, 103 ppm As, 6 Sb			
5-10 cm wide qtz vein	grabs/10 cm	685123	0.14	0.8				
20 cm qtz vein	chips/30 cm	685124	0.25	3.3				
Qtz vein in silic rock	chip/2.0 m	685125	<0.05	0.9	2 ppm Sb			
Qtz vein in silic rock	chip/2.0 m	685126	<0.05	1.9	202 ppm As, 3ppm Hg, 5 ppm Sb			
Qtz vein in pit center	chip/1.0 m	685127	0.45	5.4				
Qtz veining, argillic zone east	chip/1.8 m	685128	0.12	2.3				
Qtz veining, silicified argillic zone west	chip/1.0 m	685129	<0.05	1.1	3 ppm Sb			
Qtz vein in pit	chip/1.5 m	685130	0.29	8	246 ppm As, 20 ppm Sb			
Qtz vein parallel to white pit	chip/0.5 m	685138	<0.05	9	2 ppm Bi			
Qtz vein fragments in breccia	grabs	685139	<0.05	<0.2				

Figure 8 Guisti West Zone - Big Ridge

Photo 3 Guisti West Zone

4.0 Cantina Area (South of Nivloc near Tailings)


One day was spent in the area southeast of the Main Nivloc Shaft on both sides of the tailings area. The purpose was to tie together the geological mapping of the Nivloc footwall rocks as well as locate and sample a number of quartz veins that are exposed in outcrop and old trenches. Six rock samples were collected. Brief descriptions as well as Au and Ag assays are shown in Table 5. The sample locations are shown in Figure 9 and the southwest corner part of Figure 10.

The quartz veins in this area are similar to those in the Guisti West area discussed previously. Most of them have a strike between 020 and 032 degrees and dip towards the northwest. They are remarkably continuous and can be traced through intermittent shallow overburden areas for hundreds of metres. The host rocks are mainly sediments but they appear to also cut the overlying volcanic rocks. All six contain very significant precious metals with Au ranging from 0.16 to 1.81

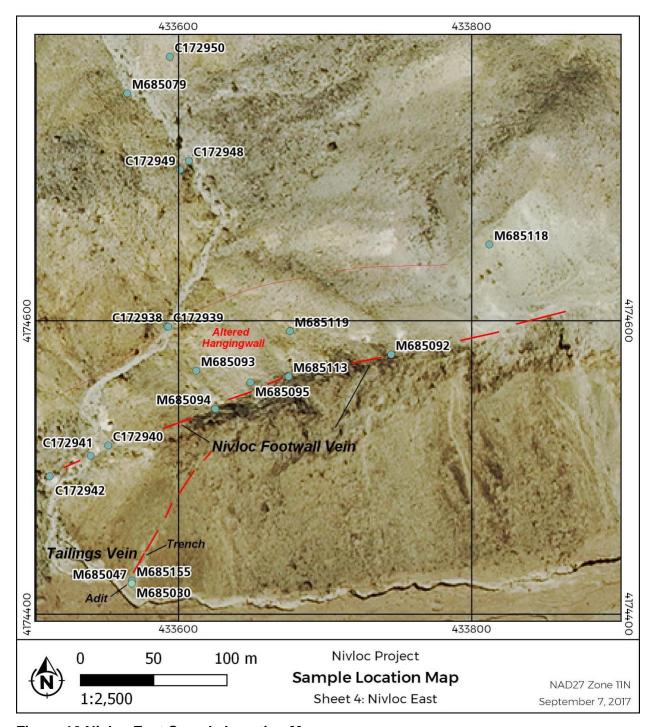

g/t and Ag from 24 to 134 g/t. The highest value is from an old, short adit (Figure 10) that is located north of the tailings area and approximately 90 metres south of the Main Nivloc Vein. In this adit and in a trench above the adit, a chip sample across a 0.8 m wide zone assayed 1.81 g/t Au and 134 g/t Ag. A grab sample from vein material assayed 1.76 g/t Au and 130 g/t Ag.

Table 5 Samples from Quartz Veins South of Nivloc Zone

Samples from Quartz Veins South of Nivloc Zone								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Old house vein- qtz- calcite	grab/10 cm	685109	0.19	30	2.76% Ca, 8 ppm Sb			
Old house vein- qtz- calcite	grab/15 cm	685110	0.16	24	3.43% Ca, 5 ppm Sb			
Old house area quartz	grab/10 cm	685111	0.20	30	4 ppm Sb			
West of old house, vein qtz-cal	grab/15 cm	685112	0.54	44	9.9% Ca			
Tailings vein, qtz vein in pit	chip/0.8 m	685155	1.81	134				
Tailings vein, qtz vein in pit	grab	685047	1.76	130				
Face of small adit	chip/1.5 m	685030	0.5	27	276 ppm As, 4 ppm Sb			

Figure 9 Cantina Zone Sample Location Map

Figure 10 Nivloc East Sample Location Map

5.0 Nivloc East

The work program in this area consisted of 3 days of prospecting, rock sampling and reconnaissance scale mapping. The principal purpose of the work in this area was to examine the potential for the extension of the Nivloc Vein beyond its presently known most easterly exposure, primarily focusing on an area approximately 2,000 metres northeast of the Nivloc Main Shaft. The vein disappears under extensive large talus and post mineral volcanic rocks but there appears to be evidence of a fault structure continuing towards the east immediately to the north of a younger, rhyolite plug that forms a large hill in this area. A sample from a quartz boulder in this area collected during a property visit by an independent company in 2013 assayed 1.89 g/t Au and 252 g/t Ag. Prospecting was unable to locate any bedrock exposures of the vein in this area. Photo 4 shows the rhyolite plug that forms the hill on the east side of the Nivloc Mine area. The red gossan shows the projected strike of the fault structure that hosts the Nivloc Vein.

Photo 4 Rhyolite Hill with Gossan

The work program then focused on sampling the Nivloc Vein where exposed between the Main Nivloc Shaft and the top of the hill above the Bighorn Adit, a distance of approximately 500 m. The footwall vein of the Nivloc Structure is exposed intermittently along the northwest side of a ridge commencing approximately 250 m northeast of the Nivloc Main Shaft. Thirteen (13) samples were collected from outcrop, old pits and adits. Results for Au and Ag are shown in Table 6. Eight of these samples were from the footwall vein of the Nivloc Structure (Figure 10). One (1) of these samples was from the most easterly exposure of the vein where it is nearly 100% calcite. This sample contained no detectable gold and only 1 g/t Ag. The other 7 samples contained from 0.06 – 6.27 g/t Au and 8 – 912 g/t Ag. Considering that these samples were from surface or near surface, the potential for strong mineralized zones in this area east of the Nivloc Main Shaft is very high.

The other 5 samples were collected from old pits and outcrop located within an argillic and silicified alteration zone that extends for approximately 50 m on the northwest side of the Nivloc footwall vein. This area contains large blocks of volcanic breccia and sedimentary rocks exposed locally but is mainly covered by talus. The most interesting results are from 2 samples collected from an outcrop of quartz vein near the portal to a short adit near Colvin Creek. The adit is located approximately 50 m north of the Nivloc Footwall vein and within the clay-altered tectonic breccia that forms the hanging-wall zone. This quartz vein zone may be the surface exposure of the uppermost vein in the Nivloc Structure. A chip sample across a 1.0 m vein assayed 0.08 g/t Au and 3.8 g/t Ag. It is highly probable that this vein will be of much higher grade down dip.

Photo 5 shows the old pits and trenches along the footwall of the Nivloc Structure east of the Main Shaft. The lighter coloured band of rocks in the left center of the photo is the altered sedimentary/volcanic breccia that makes up the hanging-wall to the Nivloc Vein.

Table 6 Samples from east of Main Shaft, Nivloc Vein

Samples from east of Main Shaft, Nivloc Vein								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Nivloc Vein-top of hill	grab/15 cm	685092	<0.05	1	>25% Ca			
Nivloc Footwal- inclined pit	chip/0.8 m	685094	1.09	89				
Nivloc Footwall, small pit	chip/0.8 m	685095	0.39	49	16.4% Ca			

Samples from east of Main Shaft, Nivloc Vein							
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values		
Nivloc Vein, o/c under trestle	chip 0.5 m	685102*	1.03	37	1.6% Ca		
Nivloc Footwall Vein	chip/0.5 m	685113	0.19	8	19.4% Ca		
Muck from around old shaft	grab	172940	1.98	246	4 Hg, 553 Mo		
Muck from around old shaft	grab	172941	0.06	11			
Muck from around old shaft	grab	172942	6.27	912			
Black rock by adit	grab	685093	<0.05	<0.02	3 ppm Sb		
Calcite vein; 030° trend	chip/15 cm	685118	<0.05	<0.02	18.4% Ca		
Clay altered wall of Adit	chip/1.0 m	685119	<0.05	<0.02	9.9% Ca		
Sil zone, front of adit	chip/1.0 m	172938	<0.05	<0.02			
Classic epi-qtz, o/c, Adit	chip/1.5 m	172939	0.08	3.8			

^{*} location of Figure 18

Photo 5 Nivloc East looking east from Main Shaft

6.0 Nivloc West Area

The purpose of the work program in the Nivloc West Area was to locate the projected southwest extension of the Nivloc Structure beyond the area of the drilled resource. The work was a continuation of sampling and geological mapping initiated in 2012 so the samples collected at that time are included in the following discussion. It also included surface sampling of the Gold Cap area, a zone of high gold values that overlies the resource blocks from the previous drilling. Proceeding from east to west, the work will be discussed in four sections (6.1 - 6.4).

6.1 Gold Cap

Work included collection of 17 samples along a 400 m strike length commencing at the Polvorin (explosives adit) near the road to the west of the Main Shaft and ending at the McLellan Shaft east of Silver Pond Creek. The assays and descriptions of these samples are shown in Table 7 and the sample locations are shown on Figure 11. Values from these samples ranged from trace to 5.55 g/t Au and from 0.9 – 474 g/t Ag. The outcropping of the Nivloc Footwall Vein in the Polvorin area assayed 3.93 g/t Au and 172 g/t Ag over a sampled width of 8.0 m. Approximately 25 m up the hill along strike, a 5.0 m wide section of the vein assayed 5.55 g/t Au and 474 g/t Ag. The other samples were mainly grab samples from muck from old shafts and trench exposures. This area was examined by Sunshine Mining in the 1970's and1980's as a stand-alone gold deposit. Work at that time included outcrop sampling, bulldozed trenches and shallow drilling. The exact locations of the Sunshine drill holes are unavailable at this time. The results from the Sunshine Mining work and the current sampling needs to be compiled to evaluate this area as a stand alone gold target.

Photo 6 shows a view of the east side of the Gold Cap area. The Polvorin is in the bottom left corner of the Photo.

Table 7 Samples from Gold Cap

Samples from Gold Cap							
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values		
o/c qtz-calcite vein	chip/0.3 m	685101	0.11	15	5.6% Ca		
o/c Nivloc vein hangingwall	chip/3.0 m	685105	1.34	274	20.4% Ca		

	Samples from Gold Cap								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values				
o/c Nivloc vein hangingwall	chip/1.0 m	685106	0.06	3.7	>25% Ca				
o/c Nivloc vein footwall	chip/8.0 m	685107	3.93	172	13.5% Ca				
o/c vein between hanging & footwall	chip/0.5 m	685108	0.14	10					
o/c qtz-ca vein below footwall	chip/1.5 m	685154	0.08	34	11.3% Ca				
o/c Polvorin footwall vein	chip/5.0 m	685040	5.55	474	7.8% Ca				
o/c brecciated shear-hangingwall	chip/0.6 m	685041	0.44	13	3.72% Ca				
o/c qtz vein + wallrock	chip/3.0 m	685042	<0.05	8	20% Ca				
o/c qtz vein + alt wall rock	chip/3.0 m	685043	0.21	21	16.7% Ca				
o/c qtz vein + alt wall rock	chip/2.0 m	685044	0.61	76	9.9% Ca				
McLelland Shaft muck	grab	685001	1.94	166					
Qtz vein material in trend	chip/0.3 m	685002	<0.05	0.9					
Pegleg Shaft muck	grab	685003	3.63	292					
Qtz vein material in trend	chip/0.3 m	685004	1.21	73					
Uppermost vein, pure calcite	chip/0.6 m	685005	<0.05	3	>25% Ca, 2 ppm Sb				
Footwall vein, o/c	chip/0.2 m	685045	1.54	86	18.2% Ca				

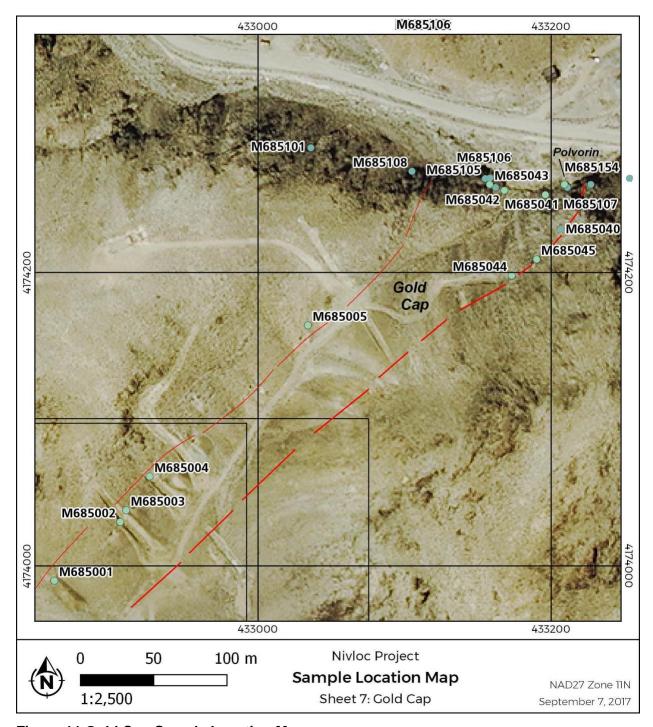


Figure 11 Gold Cap Sample Location Map

Photo 6 Gold Cap looking west from Main Shaft

6.2 Shaft and Open Cut/Pit Area West of Silver Pond Creek

This area lies to the immediate west of the IMMC resource area and is the last known surface exposure of the Nivloc Vein. It includes a small open cut/trench into the cliff beside the Silver Lake access road and an old shallow shaft at the top of the cliff. Nine samples were collected in this area. Descriptions and Au/Ag results are shown in Table 8. Locations are shown on Figure 12. Assays ranged from 0.06 g/t – 3.8 g/t Au and from 3.4 to 89 g/t Ag. All of these samples were from narrow quartz veins that are part of a wider fractured zone – up to 15 m wide. All contained elevated Au and Ag so it is safe to assume that they will coalesce with depth. This confirms that the Nivloc Vein extends westward beyond Silver Pond Creek. The vein disappears under overburden and post mineral volcanic rocks but may be cut off by a northeast trending fault a short distance beyond the old shaft. Photo 7 shows the Nivloc Vein at surface in the Open/Cut/Pit on the west side of the access road to Silver Pond. Note the narrow veining which is typical of many epithermal veins in this area. Historical studies in the Silver Peak area have shown that these narrow veins typically coalesce into thicker veins at depth.

Table 8 Samples from Pit/Shaft Area west of Pond

Samples from Pit/Shaft Area West of Pond								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Qtz bx vein north of shaft	chip/0.5 m	685006	0.30	29				
Qtz bx vein north of shaft	chip/0.4 m	685007	0.08	3.4				
Qtz bx vein	chip/0.4 m	685008	0.85	89	2.7% Ca			
calcite vein, qtz, epidote	grabs	685009	1.25	29	6.09% Ca			
o/c by shaft-Nivloc- west of pond	chip/0.3 m	685026	0.91	33				
Pit face by road- west of pond	chip/1.0 m	685027	3.08	18				
East pit on cliff o/c	chip/0.6 m	685028	0.33	30				
West pit on cliff o/c	chip/0.8 m	685029	0.06	12				
Qtz vein south of shaft	chip/0.6 m	685031	0.08	11				

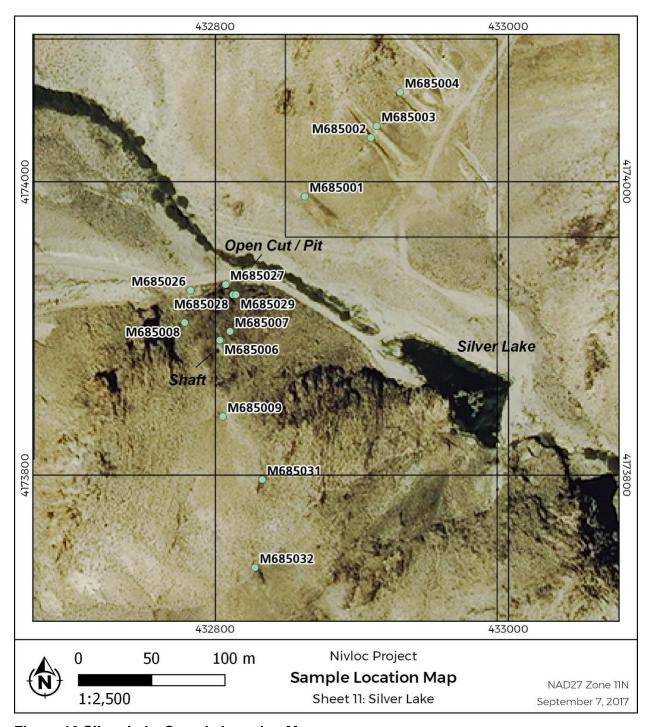


Figure 12 Silver Lake Sample Location Map

Photo 7 Open Cut west of Silver Pond Creek

6.3 West of Silver Pond Creek beyond Shaft and Open Cut/Pit

The southwest trending Nivloc Vein was not traced at surface beyond the area discussed in Section 6.2, probably because this area is covered by post mineralization volcanic rocks. However, approximately 400 m to the west of Silver Pond Creek, there is an erosional window that exposes the favourable underlying sedimentary rocks. There is limited outcrop in this area. However, there is evidence in the form of strong southwest trending fracturing and abundant calcite and gypsum in the overburden that indicate that the Nivloc Structure may extend through this area beneath a southwest trending ridge but no bedrock exposure of vein material was located. In this area there are exposures of numerous crosscutting veins trending from 350 to 030° and many of these contain elevated Au and Ag. Fifteen samples were collected from quartz-calcite veins in outcrop and as boulders. The sample descriptions and assay results from Au and Ag are shown in Table 9 and the locations are shown on Figure 13. Au values ranged from <0.05 – 0.11 g/t and silver from <0.2 – 15 g/t. Several samples contained elevated values in pathfinder elements including one which assayed 199 ppm As (background of 10 ppm) and one of 4 ppm Sb (background of <2 ppm).

Photo 8 shows strong vertical fracturing in a 30 to 50-metre-wide area cutting relatively flat lying sediments. The trend of this fracturing is approximately northeast-southwest similar to the Nivloc Structure further to the east.

There is some evidence that there has been movement along a northeast trending fault referred to in Section 6.2 that may have resulted in the Nivloc Structure being offset to the north on the west side of Silver Lake Creek. If so, western extension of the Nivloc Structure may lie beneath a prominent southwest trending valley in this area. An airborne geophysical survey (magnetometer and radiometrics) may be useful in tracing the structure in this direction.

An old adit, herein referred to as the JOY Adit was examined in the extreme northwest part of the area examined. This adit is driven into a cliff on the north side of the valley that extends southwestward from the Martin Adit area near the Silver Lake creek. The adit was driven for approximately 50 metres in rhyolite breccia and there is no trace of any quartz veining (see Figures 14 and 15). One sample was taken from a 1 metre wide altered, rhyolite dyke that cuts the adit about midway from the entrance, but no significant assays results were obtained. Two other samples were collected from a north-south trending quartz vein that lies to the east of the adit in younger sedimentary rocks.

Table 9 Samples from West Nivloc Area

Samples from West Nivloc Area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
10 cm qtz-calcite vein	grab/10 cm	685083	0.06	6	>25% Ca			
Vein top of hill by gypsum pit	grab/20 cm	685084	<0.05	0.2	10.7% Ca			
JOY Adit, alt felsic dyke	chip/1.0 m	685085	<0.05	0.9	199 As			
Qtz vein in shear/fault	chip/0.3 m	685086	<0.05	1.5				
Boulders from gypsum pit	grabs	685100	<0.05	0.2	1.1% Ca			
Qtz veinlet zone with gypsum	chip/0.6 m	685115	<0.05	0.2				
Qtz veinlet zone with gyp, calcite	chip/1.0 m	685116	<0.05	<0.2	5% Ca			
10 cm qtz vein, 024° trend	chip/10 cm	685117	<0.05	1.6				
Qtz calcite vein, deformed host	chip 20 cm	685152	0.10	9	8% Ca			
10 cm qtz cal vein with Mn	grab/5 cm	685166	<0.05	0.7				
boulder of qtz-cal- gyp	grab	685167	<0.05	<0.2	5.3% Ca			
boulder of qtz-cal- gyp	grab	685168	<0.05	<0.2	14.7% Ca			
Qtz-calcite vein	grab/10 cm	685081	<0.05	0.3	21.7% Ca			
Qtz-calcite vein folded	chip 0.4 m	685082	<0.05	11	>25% Ca			
Qtz Bx vein in seds	grab	685010	<0.05	3.2				
Pit, cal-qtz vein, purple, Mn	grab	685011	0.06	19	>25% Ca			
Pink cal-qtz vein banded	grab	685012	<0.05	0.2	24.4% Ca			
Qtz-cal stringers	grab	685013	<0.05	<0.2	13.6% Ca			
Qtz, bx vein, Nivloc??	grab	685014	<0.05	1.1	1.7% Ca			
Qtz-cal vein, bx	grab	685015	0.55	170	15.9% Ca			
Cal vein, west of pit	grab	685016	<0.05	1.6	>25% Ca			
Qtz vein at vol contact	grab	685032	<0.05	1.2				

Samples from West Nivloc Area									
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values				
Qtz-cal vein in andesite	grab	685033	<0.05	0.3	6.4% Ca				
Alt sandstone in pit	grab	685034	<0.05	0.2					
Qtz vein near pit	grab	685035	<0.05	0.3	246 ppm As, 5 ppm Sb				
Cal-qtz vein	grab	685036	<0.05	<0.2	21.2% Ca				
Qtz vein in fault, vol	grab	685037	<0.05	0.7	133 ppm As, 8 ppm Sb				
Layered cal-qtz vein	grab	685038	<0.05	<0.2	20.6% Ca				

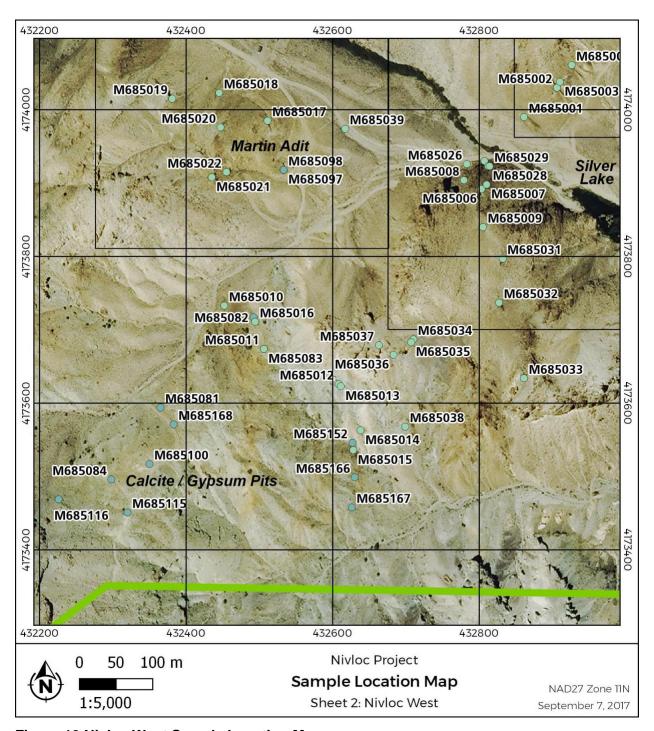


Figure 13 Nivloc West Sample Location Map

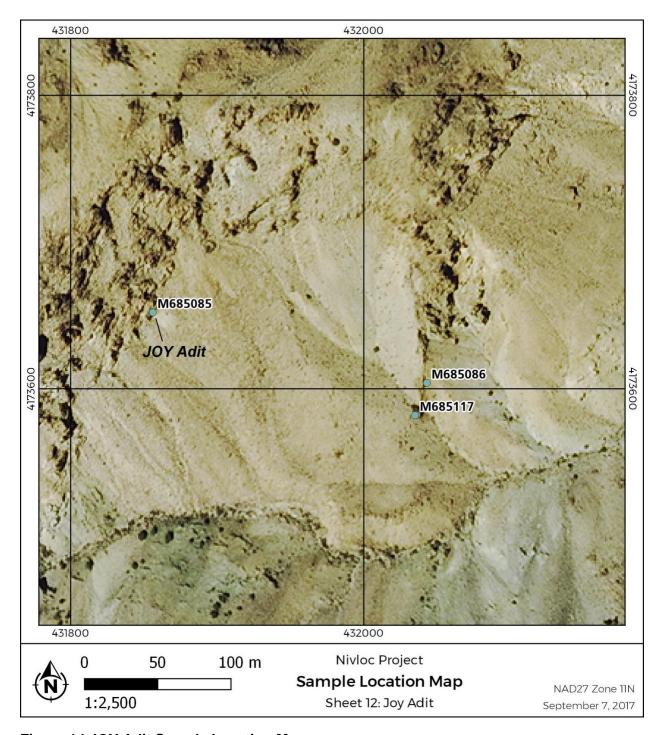


Figure 14 JOY Adit Sample Location Map

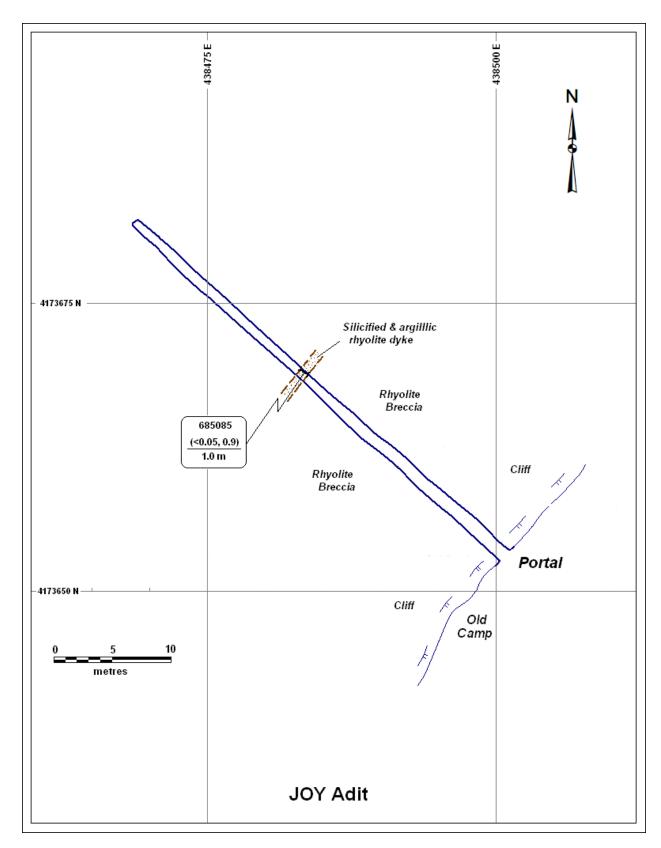


Figure 15 JOY Adit

Photo 8 Nivloc West Area looking west

6.4 Martin Adit Vein

The Martin Adit Vein lies to the west of Silver Lake Creek and approximately 200 m northwest of the projected Nivloc Structure. The Martin Adit Vein appears to be a north-south trending vein where exposed and would crosscut the projected western extension of the Nivloc Structure but there is a possibility that it is the offset Nivloc Vein. The Martin Vein is more than 3.0 m wide where exposed and it dips 55° towards the southwest. Nine samples were collected from the Martin Vein area. The sample results are shown in Table 10 and the sample locations on Figure 16. Figure 17 is an enlarged view of the Martin Vein area showing the outcrop distribution as well as old pits and trenches.

Three samples were chipped from the vein where it is exposed above a short decline. The weighted average grade of these samples was 1.13 g/t Au and 85 g/t Ag over a width of 3.0 m. The vein was made up of about 20% calcite and 80% quartz suggesting better grade potential with depth. Six other samples from surface quartz-calcite vein exposures in the Martin Adit area ranged from <0.05 - 1.74 g/t Au and 1.3 - 114 g/t Ag, all containing 20 - 40% calcite.

Table 10 Samples from Martin Adit Area

Samples from Martin Adit Area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Left-channel chips above adit	chip/0.4 m	685096	0.63	20	17% Ca			
Center-channel chips above adit	chip/2.2 m	685097	1.06	92	14% Ca			
Right-channel chips above adit	chip/0.4 m	685098	1.98	111	11% Ca			
Qtz calcite vein, 2-3 cm	chip/0.2 m	685017	1.74	114	19.9% Ca			
Qtz calcite vein, 10 cm	chip/10 cm	685018	1.01	73	>25% Ca			
Narrow qtz-cal vein in sandstone	grab/5 cm	685019	<0.05	1.3	>25% Ca			
Calcite-qtz vein, <10 cm	grab/10 cm	685020	0.22	18	>25% Ca			
Swarm of 1 cm veinlets in sandstone	chip/0.5 m	685021	<0.05	6	0.28% Ca			
Swarm of 1 cm veinlets in sandstone	chip 0.5 m	685022	<0.05	13	0.45% Ca			

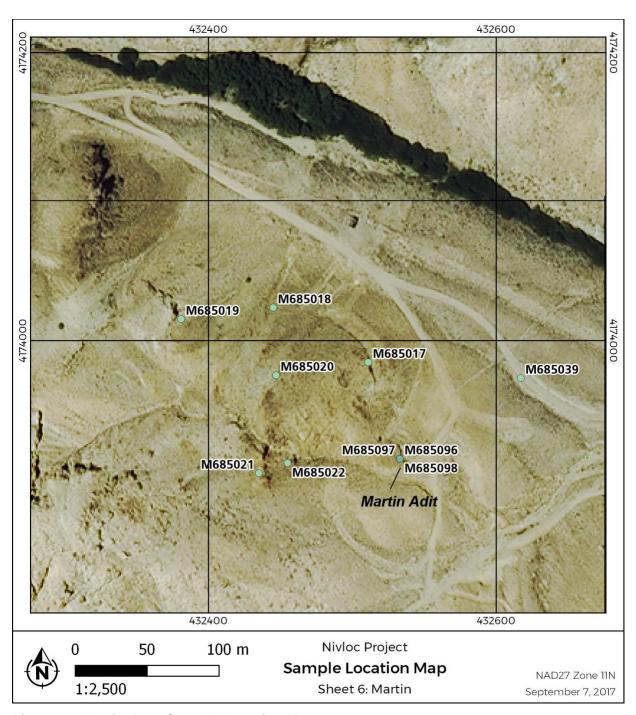


Figure 16 Martin Area Sample Location Map

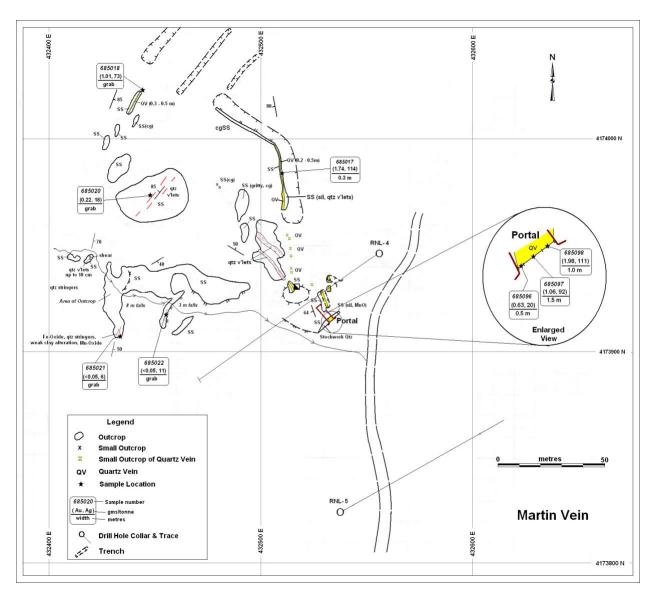


Figure 17 Martin Vein Sample Location Map

Photo 9 is photograph of the Martin Adit looking north. Note the vein zone (3 m wide) dipping towards the left in the outcrop above the adit.

Photo 9 Martin Adit and Vein looking north

7.0 MDP Area

The MDP area refers to a historical gold bearing trench that locals named the Million Dollar Pit. The area lies to the northwest of the Main Nivloc Shaft and is within the hanging wall host rocks of the Nivloc Structure but outside of the 30 - 50 m wide argillic altered contact zone. The 2017 work program discovered several sub-parallel narrow quartz veins and veinlet swarms that trend from $030 - 040^{\circ}$ and dip towards the northwest. This orientation is at a low angle or sub-parallel to that of the Nivloc Structure and there is a strong probability that these veins are the surface expression of veins that were intersected above the Nivloc Structure during IMMC's 2011/2012 drilling program. The drill intersections included widths from 2.0 - 15.1 m with gold ranging from 0.14 - 5.46 g/t and 65 - 564 g/t Ag. The best overall intersection was 2.52 g/t Au and 564 g/t Ag over 13.9 m in hole 11NL-6 (Sears, et al, 2012).

In the 2017 program, 14 samples were collected from various veins at surface. Assays from quartz veins, as shown in Table 11, ranged from <0.05-0.29 g/t Au and 0.6-9 g/t Ag. Several of the samples contained elevated pathfinder elements that indicate favourable Nivloc style epithermal mineralization at depth including As (up to 161 ppm in a background of 10 ppm), Mo (up to 115 ppm in a background of 3 ppm) and Sb (up to 5 ppm in a background of <2 ppm). The sample locations are shown on Figure 18. Detailed examination and sampling of the mineralized veins will be required to determine the true significance of these veins. Photo 10 shows one of the vein swarms in this area.

Table 11 Samples from MDP Area

Samples from MDP area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Qtz vein, south wall old pit	chip/0.5 m	685079	0.14	9	115 ppm Mo			
Qtz-calcite veining, 5-15 cm	chip/0.4 m	685080	<0.05	0.6	>25% Ca			
Chalcedonic qtz veining 5-20 cm	chip/20 cm	685103	<0.05	1.3				
Chalcedonic qtz veining 10-25 cm	chip/25 cm	685104	<0.05	1				
Sheared zone with qtz stringers	chip/0.5 m	172931	<0.05	5	161 ppm As			
Qtz vein, 2-10 cm	grabs 10 cm	172932	0.25	6				

Sears, Barry & Associates Limited

Samples from MDP area								
Description	Type/Width	Sample	Au g/t	Ag g/t	Other Significant Values			
Qtz vein; 5-10 cm	grabs 10 cm	172933	0.06	1.9				
Qtz vein; 5-10 cm	grabs 10 cm	172934	0.29	11				
Qtz vein; 2-15 cm	grabs 15 cm	172935	<0.05	2.3				
Qtz vein; 5-10 cm	grabs 10 cm	172936	<0.05	1.2	178 ppm As, 5 ppm Sb			
Clay altered zone with qtz stringers	chip/0.5 m	172937	<0.05	5	13.6% Ca, 109 ppm As, 4 ppm Sb			
Calcite, Mn veining swarm	chip/1.0 m	172949	0.11	3.3	13.2% Ca, 142 ppm As, 3 ppm Sb			
Qtz-calcite veining in sandstone, swarm	chip/20 cm	172950	0.15	2.6				
Rhyolite with chalcedonic veins	grab	685114	<0.05	<0.2				
Qtz-calcite veins	grab	172948	<0.05	1.5	72 ppm As, 15.3% Ca, 3 ppm Sb			

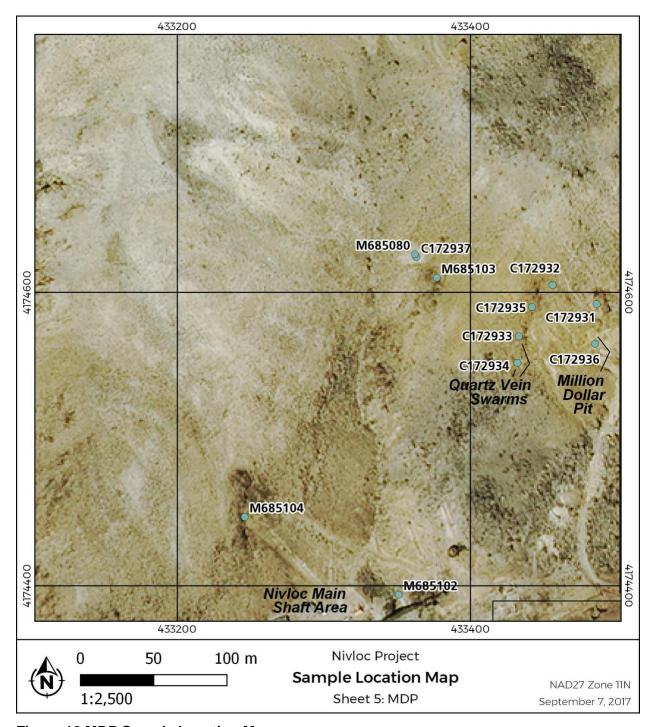


Figure 18 MDP Sample Location Map

Photo 10 MDP Area Quartz Veining

8.0 Interpretation and Conclusions

The prospecting, sampling and reconnaissance geological mapping program completed in 2017 along with the results from surface work completed in 2013 has provided key information that will assist in advancing the exploration and development of the Nivloc property. The interpretation and conclusions from the work is discussed in Sections 8.1 – 8.3.

8.1 Nivloc Extension

Part of the program was to evaluate the potential for extension of the mineral resource area outlined in IMMC's 2011/2012 drilling program. The mapping located the lowermost vein within the Nivloc Structure and traced its surface exposure towards the east and west of the resource area for a total length of 1400 metres. The zone is covered towards the east by talus and post mineral volcanic rocks. A single sample of an epithermal quartz boulder similar in appearance to Nivloc Vein material assaying 1.89 g/t Au and 252 g/t Ag indicate that there is potential for the zone to extend for another 800 metres towards the east. There is little that can be done to confirm the vein in this area with the exception of diamond drilling.

There is a strong possibility that the Nivloc Structure has been offset towards the north on its western end a short distance past a creek referred to as Silver Lake Creek. A vein system exposed in this area – the Martin Vein – may be in some way associated with the western offset of the Nivloc Vein. The Martin Vein is well mineralized at surface and also has excellent exploration potential as a stand-alone target. Detailed mapping, modelling and diamond drilling is required in this area.

Numerous swarms of quartz veins located immediately to the north of the Nivloc Vein in the shaft area may be the surface expression of a vein system that was intersected in the hanging-wall of the Nivoc Vein in the 2011/20132 IMMC drilling program. Some of the samples collected from these veins at surface contain elevated Au, Ag and pathfinder minerals that indicate strong potential for economic mineralization at depth. Drilling will be required to test these vein swarms.

Sampling of the surface exposure of the Nivloc vein in an area referred to as the Gold Cap has verified strong gold values. The Gold Cap zone lies directly above the IMMC resource area defined by the 2011/2012 drilling. Systematic, shallow drill holes are required to determine the economic significance of this area.

8.2 Guisti Area

The Guisti Zone was recently acquired by the company, although an old adit that represents one portion of the zone is located immediately adjacent on the southeast of the original IMMC property. Additional claims were acquired earlier in 2017 to extend the property boundary to include this prospect and other favourable geology. The work program located a second adit on the Guisti Vein – the Inca Adit - and identified a very strong alteration zone with excellent gold values along its northern extension. Gold values ranging from 0.12 – 11.35 g/t were obtained from the vein and from narrow, parallel veins within the altered wall rocks. This vein system is very strong and warrants additional work. A small stripping program in the area of the northern adit (the Inca Adit) to accommodate systematic channel sampling of the vein and surrounding altered rocks is required followed by a small, initial drill program to test the down dip potential of the Guisti Zone in several areas along its strike.

A silicified, breccia zone along strike to the southwest of the main Guisti Adit was sampled to verify sampling results by previous owners. This zone is referred to as the Tom Zone. The sample results demonstrate that the Tom Zone requires additional follow-up work. Additional surface work to extend this zone is limited due to heavy overburden cover. Geophysical surveys may be useful in this area followed by diamond drill testing.

8.3 Guisti West Area

Within the footwall of the Nivloc structure, there are scores of quartz veins, veinlets and swarms of veinlets that are oriented between 020 and 032 degrees, subparallel to the Guisti Vein. They typically dip towards the northwest and are discordant to the Nivloc Structure which strikes from 042 degrees to 080 degrees. These veins range from a few centimeters to more than 1 metre in width. Many of the veins contain significant Au and Ag values. They include the extensive vein swarm discussed in this report as the **Big Ridge Zone** as well as a number of veins in the tailings containment area, referred to in this report as the **Cantina Zone**. As a general rule the veins increase in width as they get closer to the Nivloc Structure. A 0.8 m wide chip sample from a trench along one of these veins, the Tailings Vein, assayed 1.81 g/t Au and 134 g/t Ag. As with other surface samples in the Silver Peak district, there is a strong possibility that these narrow veins will increase in both thickness and grade with increasing depth, at least until they pass through the favourable deposition window that is typical of many epithermal veins. These veins may have economic significance in the near term. The highest priority areas are at points where

Sears, Barry & Associates Limited

the vein swarms intersect with the Nivloc Vein. The only way to test the potential of these veins is by drilling. This may be warranted later in the exploration /development of the Nivloc Vein.

9.0 Recommendations

9.1 Nivloc Extension

At the present time, the most effective use of funds is to complete the planned definition drilling of the mineral resource area as defined by the 2011/2012 IMMC drilling. During this program, several days can be directed towards detailed geological mapping in several areas. Following this, a systematic series of drill holes will be required to explore the northeast and southwest extensions of this zone. This will require a combination of drilling and underground development complemented by detailed geological modelling. A budget estimate to accomplish this will be prepared following the planned infill drill program.

9.2 Guisti Structure

The Guisti Zone is a very strong gold and silver bearing structure that has potential to add significant value to the Nivloc Project. The broad area of auriferous alteration associated with the vein, particularly in the northern (Inca Adit) area, warrants some immediate attention, including manual or mechanical stripping and channel sampling. The minimum amount of time required in Inca Adit area is five 2-man crew days with 2 additional days to be focused on channel sampling in the Main Adit and Tom Zone area near the access road. Following this, a minimum of 3 shallow drill holes will be required to test the zone along its currently defined 300 m exposed strike.

9.3 Guisti West Area

Additional work required on these veins is limited to drill testing. It may be possible to target the intersection of one of these cross veins by extending a hole that is primarily aimed at the Nivloc once the definition drilling in the current resource area is completed.

9.4 General

An airborne geophysical survey (magnetometer, EM and radiometric) should be useful in tracing the Nivloc Vein and the Guisti Vein as well as identifying wider portions of the cross-cutting vein swarms. A ground based magnetic survey could determine if the airborne survey would be effective without major investment. This would simply require the rental of a magnetometer system and 3 field days to test several parts of the property.